

Getting Started with ESS-DIVE's Reporting Formats Emily Robles, Joan Damerow

.S. DEPARTMENT OF

Presenters

Emily Robles Senior Research Associate

Joan Damerow Community Engagement Lead, Research Scientist

Overview

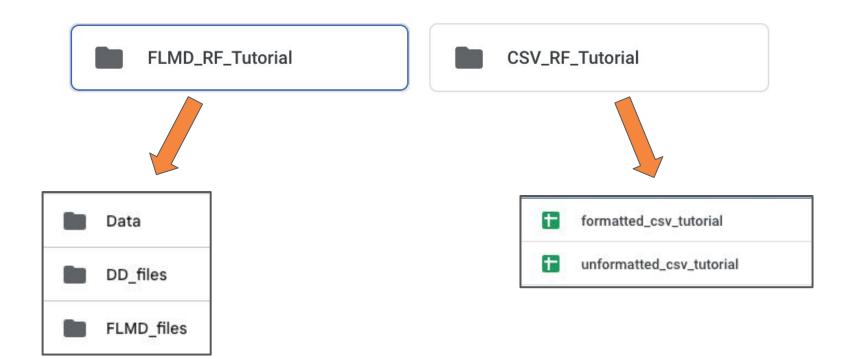
1. File-level Metadata (FLMD)

- Overview, requirements, use
- Hands-on practice

2. CSV Reporting Format

- Overview, requirements, use
- Hands-on practice

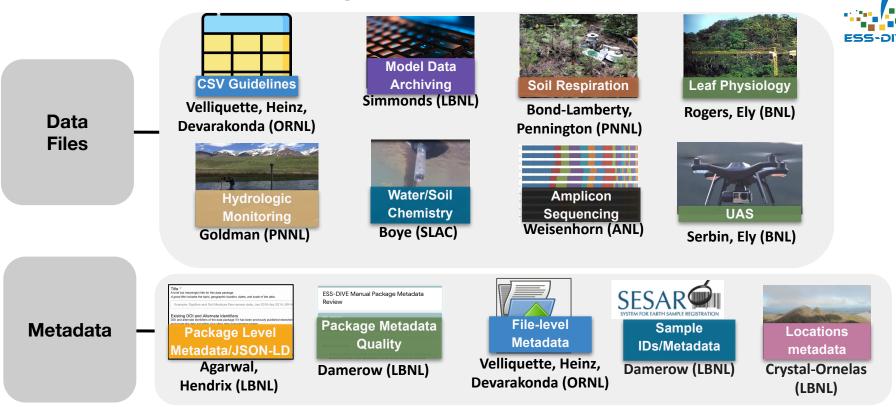
3. Samples Reporting Format

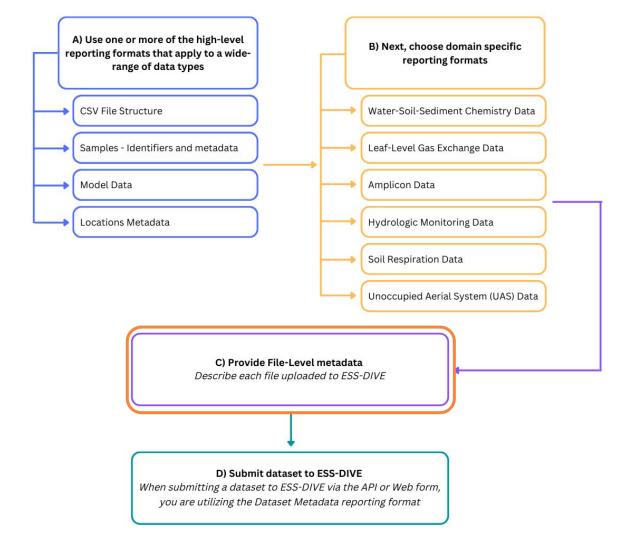

4. Publishing Datasets with Reporting Formats

- Review and publication workflow
- Common errors and potential for tools

Questions and discussion encouraged!

Access to Hands-on Content

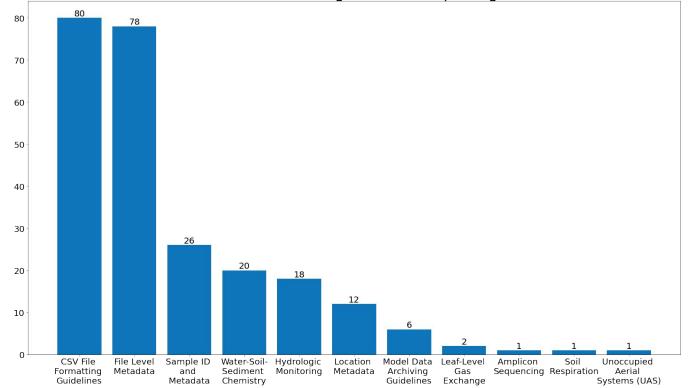

Benefits of Reporting Formats


The standardized data and metadata templates improve both human- and machine-readability

- Makes data more Findable, Accessible, Interoperable, Reusable
- Set consistent methods of reporting data within a project
- Allows scientists to easily work across multiple datasets
- Planned ESS-DIVE tools for advanced data search, integration, and visualization will leverage reporting formats

ESS-DIVE Reporting Formats

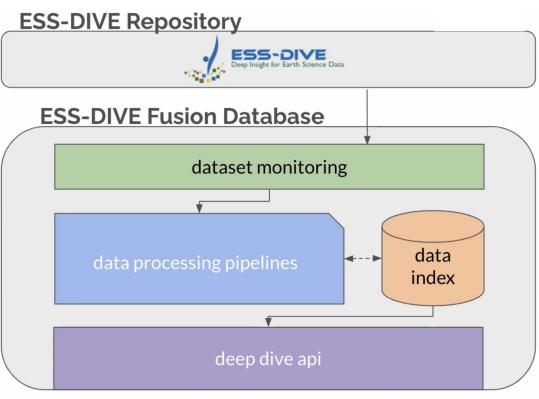
Crystal-Ornelas, R. et al. Enabling FAIR data in Earth and environmental science with community-centric (meta)data reporting formats. Sci Data 9, 700 (2022). https://doi.org/10.1038/s41597-022-01606-w


Reporting formats offer multiple levels of formatting guidance

Status of Reporting Format Datasets

Published Datasets Using ESS-DIVE Reporting Format

Early adoption has been key to the development of tools and features


96 datasets using reporting formats are publicly available

Published Datasets Enable Enhanced Search

Completed FLMD and data dictionary files enable Fusion DB to **find** and **extract** your data from parsable CSV files in published datasets

Published Datasets Enable Enhanced Search

Use of reporting formats enables enhanced search through the **Deep Dive API**

- Separate from ESS-DIVE main search
- Searches data within dataset files

Published datasets that employ reporting formats are instrumental to enabling advanced search

Interactive API at fusion.ess-dive.lbl.gov

doi	The digital object identifier (doi) representing a dataset
array[string] (query)	doi:10.15485/1962818 -
maxLength: 100 minLength: 1	Add string item
fieldName	The field name to search for.
string (query)	stream
maxLength: 100 minLength: 1	
recordCountMin	Filter by record count greater that or equal to.
integer (query)	500
recordCountMax	Filter by record count less than or equal to.
integer (query)	recordCountMax
fieldValueText	Filter by a text field value. Search is case insensitive
string (query)	fieldValueText
fieldValueNumeric (query)	Filter by a numeric value that is between min and max summary values.
	fieldValueNumeric
fieldValueDate (query)	Filter by a date/datetime value that is between min and max summary values. Date format: (yyyy-mm-dd), Datetime format: (yyyy-mm-ddTHH:MM:SS)
	fieldValueDate

Getting Started

Hands-on practice with broadly applicable reporting formats

Metadata at the file-level for all datasets and data types

Guidelines for all data in CSV tabular format

Later today!

Model code management and model data archiving

IDs/Metadata

Guidelines for archival of sample data with IGSN IDs

File-level Metadata Reporting Format Purpose, requirements, and hands-on exercise

The Role of File-level Metadata

File-level metadata provides the information needed to understand, parse, and extract data from files. It consists of two files:

- 1. File-level Metadata File (FLMD)
 - Each row contains information about a file within the dataset
- 2. Data Dictionary File (dd)
 - Each row contains the header row/column information of individual files

The ESS-DIVE Fusion DB uses the FLMD reporting format to parse CSV files and enable advanced search capabilities

FLMD v2.0 Requirements and Recommendations

Required

File Name

• Name of associated file

File Description

- Brief description of file that distinguishes it from other files
- Information about data type

Recommended

Standard

- State if any data or metadata standard was applied to the data file
- If reporting formats were used, use defined terms provided

Optional

- Header rows
- Column or row name position
- File Version
- Data Orientation
- Notes

NEW FLMD Header Rows and Position

Optional FLMD fields allow for handling of additional header rows/columns before **and** after the column or row names

Information	n before head	ers			
Additional i	nformation				
One more r	ow of inform	ation			
leaf	date	measurement_time	conductance	temperature	leaf_sensor
1	2017-06-23	7.0	318.8	37.3	48.5
2	2017-06-23	7.0	277.1	35.9	62.8
3	2017-06-23	7.0	267.3	36.1	62.9
4	2017-06-23	7.0	200.5	36.2	68.0

Sample_Name	Date	Time_Collected	Water_Temperature	Dissolved_Oxygen	
N/A	YYYY-MM-DD	hh:mm	Degrees_Celsius	miligrams_per_Liter	
Site 1 Sample	2022-01-12	13:05	22		10.05
Site 2 Sample	2022-01-12	13:50	20.7		-9999
Site 3 Sample	2022-01-12	14:22	19.7		-9999
Site 4 Sample	2022-01-12	14:56	-9999		10.56

Header Rows and Position

header_rows

- Used when rows after variable/header names and before data
- Provide the number of header rows that occur after the column or row names in a file and before the data begins

Sample_Name	Sample_Name Date		Water_Temperature	
N/A	YYYY-MM-DD	hh:mm	Degrees_Celsius	
Site 1 Sample	2022-01-12	13:05	22	
Site 2 Sample	2022-01-12	13:50	20.7	
Site 3 Sample	2022-01-12	14:22	19.7	
Site 4 Sample	2022-01-12	14:56	-9999	

header_rows = 1

Header Rows and Position

column_or_row_name_position

- Used when rows before variable/header names
- Provide the row or column number that contains the header names
- If not included, it will be assumed that header names are in row 1 (for horizontal orientation)

Location informatio	n: Site 1 had pH mo	nitor issues for s	sample on 202	2-01-18 15:32		
Contact emilyaroble	Contact emilyarobles@lbl.gov for more information about dataset					
Sample_Name	DateTime_Start	DateTime_End	Location_ID	Water_Temp		
Site_1_2022-01-18	2022-01-18 15:32	2022-01-18 16	Site_1	10.2		
Site_3_2022-01-18	2022-01-18 15:23	2022-01-18 15	Site_3	10.4		
Site_7_2022-01-18	2022-01-18 15:11	2022-01-18 15:	Site_7	10.1		
Site_8_2022-01-18	2022-01-18 15:18	2022-01-18 15	Site_8	10.7		

column_or_row_name_position = 3
Important: If row is commented out (preceded by
hash mark) the row should not be counted

NEW Controlled Standard Names

standard

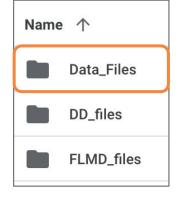
Sta	Indana			ESS-DIVE		
•	Note if any standard			FLMD v1		
•	formats are being used in a data file Now have a list of	ESS-DIVE Model Data v1	ESS-DIVE Soil Respiration v1	ESS-DIVE Water-Soil-Se diment Chem v1	ESS-DIVE Leaf-level Gas Exchange v1	ESS-DIVE UAS v1
	names to use for the ESS-DIVE reporting formats	ESS-DIVE Amplicon v1	ESS-DIVE Hydrologic Monitoring v1	ESS-DIVE Sample v1	ESS-DIVE CSV v1	ESS-DIVE Location v1

Reminder: Include the name(s) of reporting format(s) used in the package-level keywords when submitting your dataset

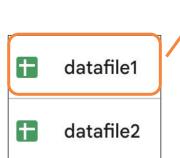
Data Orientation

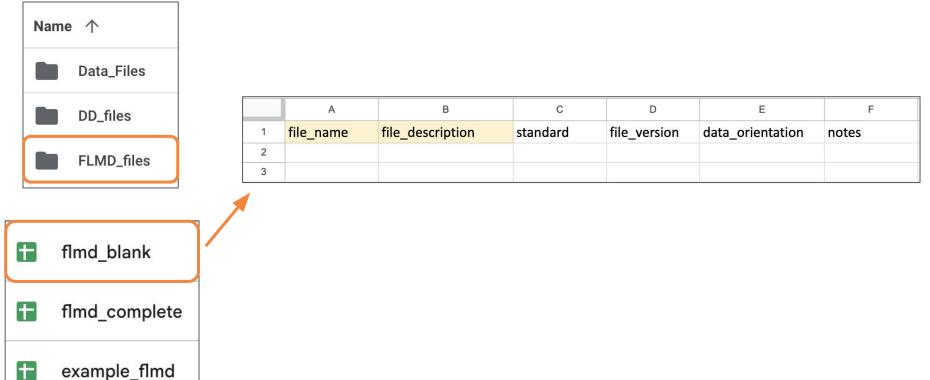
Two options for noting data orientation for CSV files within the file-level metadata:

- 1. Horizontally with Names at the top of each column
- 2. Vertically with Names at the start of each row.


area	plot_type Latitude		Longitude	year	CH4_flux	
Site 6	CLC1	71.29573	-156.66473	2010-07-07		91.8
Site 6	CLC2	71.29571	-156.66469	2010-07-07		54.3

New column = Vertical Orientation


area	Site 6	Site 6	Site 6
plot_type	CLC1	CLC2	CLC3
Latitude	71.29573	71.29571	71.2957
Longitude	-156.66473	-156.66469	-156.66467
year	2010-07-07	2010-07-07	2010-07-07
CH4_flux	91.8	54.3	63.9



	А	В	C	D	E	F	G
1	Sample_Name	DateTime_Start	DateTime_End	Location_ID	Latitude	Longitude	Water_Tempe
2	Site_1_2022-01-18	2022-01-18 15:32	2022-01-18 16:03	Site_1	38.14637	-121.25532	10.2
3	Site_3_2022-01-18	2022-01-18 15:23	2022-01-18 15:45	Site_3	38.14824	-121.26637	10.4
4	Site_7_2022-01-18	2022-01-18 15:11	2022-01-18 15:32	Site_7	38.1497	-121.29353	10.1
5	Site_8_2022-01-18	2022-01-18 15:18	2022-01-18 15:44	Site_8	38.14943	-121.29981	10.7
6	Site 9 2022-01-18	2022-01-18 15:23	2022-01-18 15:55	Site 9	38.1533	-121.3	10

Example data file 1

Data File 1 metadata tab

	A	В
1	File Version	1
2	File Description	Data file containing water quality measurements
3	Standard	ESS-DIVE CSV v1

File-level Metadata Template (flmd_blank)

	A	В	С	D	E	F
1	file_name	file_description	standard	file_version	data_orientation	notes
2						
3						

Required

File Name

• Name of associated file

File Description

- Brief description of file that distinguishes it from other files
- Information about data type

Recommended

Standard

 State if any data or metadata standard was applied to the data file (including reporting formats)

Optional

- Header rows
- Column or row
 name position
- File Version
- Data Orientation
- Notes

Completed FLMD

	А	В	С	D	E	F
1	file_name	file_description	standard	file_version	data_orientation	notes
2	datafile1.csv	Data file containing water quality measurements. Additionally, metadata is contained related to the data and the file.	ESS-DIVE CSV v1	1	horizontal	Data processing details in methods.pdf
3	datafile2.csv	Data file containing water quality measurements. Additionally, metadata is contained related to the data and the file.	ESS-DIVE CSV v1	1	horizontal	Data processing details in methods.pdf

Data dictionary fields

Used to describe each field in CSV/tabular data files

Required

Column or Row Name

• Each column or row name from the data file

Unit

• Provide variable units of measurement or "N/A" if units aren't applicable

Definition

• A complete *unambiguous* description of column or row

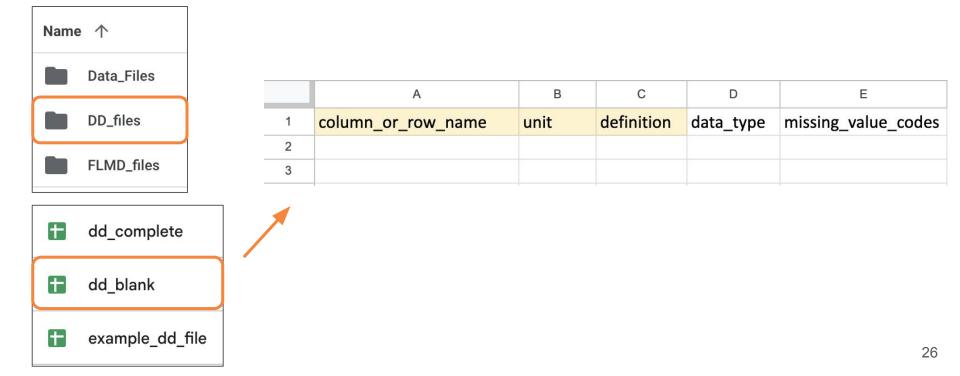
Optional

Column or Row Long Name

• Longer human-readable column or row name

Data Type

• Define the data type for each column (e.g. text, numeric, date)


Missing Value Code

• Define the missing value codes used for a specific field

Included as a CSV file **in addition** to your FLMD file and other reporting formats if applicable.

Practice: Complete a data dictionary

Data Dictionary

Data File

Sample_Name	DateTime_Start	DateTime_End	Location_ID	Latitude	Longitude	Water_Temperature	pН	Dissolved_Oxygen	Turbidity	Notes
Site_1_2022-01-18	2022-01-18 15:32	2022-01-18 16:03	Site_1	38.14637	-121.25532	10.2	-9999	11.5	1.6	pH meter did r
Site_3_2022-01-18	2022-01-18 15:23	2022-01-18 15:45	Site_3	38.14824	-121.26637	10.4	8.4	11.3	2.1	N/A
Site_7_2022-01-18	2022-01-18 15:11	2022-01-18 15:32	Site_7	38.1497	-121.29353	10.1	8.3	10.9	1.9	N/A

Data Dictionary Template (dd_blank)

For each column* in your data files, you should have a row in your data dictionary

A	В
column_or_row_name	unit

Repeated variables only need to be entered once

* or row if vertical orientation

Completed Data Dictionary

А	В	С	D
column_or_row_name	unit	definition	data_type
Sample_Name	text	name of sample	text
DateTime_Start	YYYY-MM-DD hh:mm	time at start of monitoring	N/A
DateTime_End	YYYY-MM-DD hh:mm	time at completion of monitoring	N/A
Location_ID	N/A	location name	text
Water_temperature	Degrees_Celsius	temperature of water sample collected	numeric
рН	N/A	measured pH of the watere sample	numeric
Dissolved_Oxygen	milligrams_per_liter	measured Dissolved Oxygen of the water sample	numeric
Turbidity	NTU	measured turbidity of the water sample	numeric
nitrates	milligrams_per_liter	measured nitrates of the water sample	numeric
Latitude	decimal degrees	latitude of the location	numeric
Longitude	decimal degrees	longitude of the location	numeric
Notes	text	notes associated with a sample or measurement	text

FLMD documentation and instructions

Guide to Using ESS-DIVE

Main Website S

File Level Metadata

Q

[7]

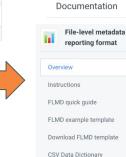
Search Data Submit Data Contact Us

Q Search...

Welcome

Frequently Asked Questions

SUBMIT DATA


Get Started

Register to Submit Data

Dataset Requirements

Describe & Format Datasets

Submit Data with Online

License

File Level Metadata	Status: READY TO USE
Purpose	Provide metadata for each data file uploaded to ESS-DIVE
Who should use	Anyone submitting files to ESS-DIVE, regardless of file type
Documentation	GitHub or GitBook

Overview

File-level metadata provides granular information at the data file level to enable comparison of data files within a data set and the ability to search for and locate files across the data collection. The recommended file-level metadata (FLMD) schema will describe the contents, scope, and structure of the data file within the ESS-DIVE repository. This metadata is fully consistent with and augments the metadata collected to describe each data set.

Getting started

Instructions for how to use this reporting format:

• File-level metadata reporting format instructions

Copy link
 On THIS PAGE
 Getting started
 Updates in v1.0.0
 How to contribute
 Copyright information
 Funding and acknowledge...
Recommended citation
Related reference
References

Questions?

If you've used the FLMD reporting format, have you had any notable pain points? / If you haven't used the FLMD reporting format, were any fields unclear?

Are there any tools you feel could be helpful in using the FLMD reporting format? / Do you use any tools already?

CSV Reporting Format

The CSV Reporting Format

What is the CSV reporting format?

- The CSV file is a non-proprietary format for tabular data
- Archives tabular data in its simplest form
- Defines structure and some content

Why use the CSV reporting format?

- Specifies common format for elements within your CSV files (e.g., missing values) which make CSVs easier to read
- Reduces inconsistencies (e.g., 2021-04-26 vs. 4/26/2021)

File Structure

ESS-DIVE

Character Set

Use the **standard US-ASCII character** set without extensions **or use UTF-8** (which includes the ASCII character set).

Using either of these character encodings will increase machine readability and interoperability.

Ascii	Char	Ascii	Char	Ascii	Char	Ascii	Char
0	Null	32	Space	64	6	96	*
1	Start of heading	33	1	65	A	97	a
2	Start of text	34		66	в	98	b
3	End of text	35	#	67	C	99	c
4	End of transmit	36	s	68	D	100	d
5	Enquiry	37	8	69	Е	101	e
6	Acknowledge	38	&	70	F	102	£
7	Audible bell	39		71	G	103	g
8	Backspace	40	(72	н	104	h
9	Horizontal tab	41)	73	I	105	i
10	Line feed	42	*	74	J	106	j
11	Vertical tab	43	+	75	K	107	k
12	Form feed	44		76	L	108	1
13	Carriage return	45	2	77	м	109	m
14	Shift in	46		78	N	110	n
15	Shift out	47	1	79	0	111	0
16	Data link escape	48	0	80	P	112	P
17	Device control 1	49	1	81	8	113	q
18	Device control 2	50	2	82	R	114	r
19	Device control 3	51	3	83	S	115	s
20	Device control 4	52	4	84	т	116	t
21	Neg. acknowledge	53	5	85	U	117	u
22	Synchronous idle	54	6	86	v	118	v
23	End trans. block	55	7	87	W	119	w
24	Cancel	56	8	88	х	120	x
25	End of medium	57	9	89	Y	121	у
26	Substitution	58	:	90	Z	122	z
27	Escape	59	;	91	I	123	{
28	File separator	60	<	92	1	124	1
29	Group separator	61	-	93	1	125	}
30	Record separator	62	>	94	~	126	~
31	Unit separator	63	?	95		127	Forward del.

Delimiter

Save files in CSV format.

This requirement is necessary for machine readability as unprotected commas will disrupt the interpretation of columns and rows.

File Structure

ESS-DIVE

Data Matrix

The contents of the data portion of the file must be in a **logical and readable matrix format**. There can be **no empty rows**. There must be the **same number of columns across all of its rows**.

row 1 column 1	row 1 column 2	row 1 column 3
row 2 column 1	row 2 column 2	row 2 column 3
row 3 column 1	row 3 column 2	row 2 column 3

File Structure

Column or row name orientation

The orientation of the Column/Row Names in the Data Matrix could be presented:

- 1. Horizontally with Names at the top of each column OR
- 2. Vertically with Names at the start of each row.

Horizontal Orientation

area	plot_type Lat	titude	Longitude	year	CH4_flux	C_CO2eq
Site 6	CLC1	71.29573	-156.66473	2010-07-07	91.8	1.355
Site 6	CLC2	71.29571	-156.66469	2010-07-07	54.3	1.178

Vertical Orientation

area	Site 6	Site 6	Site 6	Site 6
plot_type	CLC1	CLC2	CLC3	CLC5
Latitude	71.29573	71.29571	71.2957	71.28615
Longitude	-156.66473	-156.66469	-156.66467	-156.59787
year	2010-07-07	2010-07-07	2010-07-07	2010-07-07
CH4_flux	91.8	54.3	63.9	-9999
C_CO2eq	1.355	1.178	0.708	-9999
thaw denth	35	38	35	-9999

Naming structure

data1.csv, data from burned.csv, _plots.csv

File Name

Unique and **descriptive** file names about file contents

Burned_plot_veg_2016.csv, SoilPoreWaterHillslope2019.csv

Naming structure

Column/row names

Column or row names should be concise and clear.

Use only letters, numbers, hyphens, and underscores

Do not start with numbers

A	B	С	D	E	F	
area	plot_type	Latitude	Longitude	year	CH4_flux	
Site 6	CLC1	71.29573	-156.66473	2010-07-07		91.8
Site 6	CLC2	71.29571	-156.66469	2010-07-07		54.3
Site 6	CLC3	71.2957	-156.66467	2010-07-07		63.9

Naming structure

Units

Do not include units in data fields.

Can provide units below the column name as a next row /adjacent to the row name as next columns* OR only in **CSV Data Dictionary**

Include "N/A" when units are not applicable

1	A	B	C	D	E	F
1	area	plot_type	Latitude	Longitude	year	CH4_flux
2	N/A	N/A	Decimal degrees	Decimal degrees	yyyy-mm-dd	mgC-CH4 m2/day
3	Site 6	CLC1	71.29573	-156.66473	2010-07-07	91.8
4	Site 6	CLC2	71.29571	-156.66469	2010-07-07	54.3
5	Site 6	CLC3	71.2957	-156.66467	2010-07-07	63.9

* If providing units directly in data file, use header_rows variable in FLMD to note the additional row

Field Structure: Temporal Data/Range & Spatial

- Temporal Data
 - Date reported in ISO 8601 standard: YYYY-MM-DD
 - Report to known precision (e.g., YYYY-MM, YYYY)
 - $\circ \quad \mbox{Time reported in UTC: hh:mm:ss}$
 - Report to known precision (e.g., hh:mm, hh)
 - If date and time are split between two fields, name fields "date" and "time"
- Temporal Data Range
 - Range time stamped data to be reported as paired columns or rows for start and stop times
 - "dateTime_start" and "dateTime_end" OR "time_start" and "time_end"
- Spatial Data
 - Geographic coordinates to be reported in WGS84 decimal format
 - Provide latitude and longitude as separate variables

- Consistent Values
 - All data within the Column or Row must use the same units of measurement
 - Do not mix text and numeric data within same Column or Row

1	A	В	С	D	E	F	G	н	I.
1	area	plot_type	Latitude	Longitude	year	CH4_flux	C_CO2eq	thaw_depth	water_table_depth
2	N/A	N/A	Decimal degrees	Decimal degrees	yyyy-mm-dd	mgC-CH4 m2/day	gC-CO2 m2/day	cm	cm
3	Site 6	CLC1	71.29573	-156.66473	2010-07-07	91.8	1.355	35	standing water
4	Site 6	CLC2	71.29571	-156.66469	2010-07-07	54.3	1.178	> probe depth	1
5	Site 6	CLC3	71.2957	-156.66467	2010-07-07	63.9	0.708	35	0.5

- Missing Value Codes
 - Cells with missing values should be represented with Missing Value Codes
 - Numeric Data = "-9999"
 - Character Data (text) = "N/A"

1	A	В	C	D	E	F	G	н	1	J
1	area	plot_type	Latitude	Longitude	year	CH4_flux	C_CO2eq	thaw_depth	water_table_depth	notes
2	N/A	N/A	Decimal degrees	Decimal degrees	yyyy-mm-dd	mgC-CH4 m2/day	gC-CO2 m2/day	cm	cm	N/A
3	Site 6	CLC1	71.29573	-156.66473	2010-07-07	91.8	1.355	35	0	rain, ponding
4	Site 6	CLC2	71.29571	-156.66469	2010-07-07	54.3	1.178	38	1	N/A
5	Site 6	CLC3	71.2957	-156.66467	2010-07-07	63.9	0.708	35	0.5	N/A
6	Site 6	CLC5	71.28615	-156.59787	2010-07-07	-9999	-9999	-9999	-9999	lost data

			A	В	С	D	E	F	
		1	Sample Name	Date	Time Collected	Water Temperature Celsius	Dissolved Oxygen mg/L	Electrical Conductivity µS	Notes
		2	Sample_Site_1	2022-01-12	1:05 PM	22 C	10.05	46.3 uS	
	CSV_RF_Tutorial	3	Sample_Site_2	01/12/2022	13:50	20.7		45.5	
		4	Sample_Site_3	01-12-22	14:22	19.7	Water level too low to test DO	54.5 uS	
10-10		5	Sample_Site_4	2022-01-12	14:56		10.56	45 µS	
	FLMD_RF_Tutorial	6	Sample_Site_5	2022-01-12	3:12 PM	21.9	9.89		
		7	Sample_Site_6	01/12/2022	16:04		11.01	45.2	Thermome

formatted_csv_tutorial

Ŧ

Ŧ

unformatted_csv_tutorial

Unformatted CSV Tutorial file (unformatted_csv_tutorial)

	А	В	С	D	E	F
1	Sample Name	Date	Time Collected	Water Temperature Celsius	Dissolved Oxygen mg/L	Electrical Conductivity µS
2	Site 1 Sample	2022-01-12	1:05 PM	22 C	10.05	46.3 uS
3	Site 2 Sample	01/12/2022	13:50	20.7		45.5
4	Site 3 Sample	01-12-22	14:22	19.7	Water level too low to test DO	54.5 uS
5	Site 4 Sample	2022-01-12	14:56		10.56	45 µS
6	Site 5 Sample	2022-01-12	3:12 PM	21.9	9.89	
7	Site 6 Sample	01/12/2022	16:04		11.01	45.2

- **Character Set:** Use US-ASCII (includes all upper- and lowercase characters, digits, and common punctuation used in the English language
- Column/Row Orientation: data can be presented either vertically or horizontally
- File, Column, and Row Names: unique and detailed names; only use letters, numbers, hyphens, and underscores; no spaces
- Units: include as next column or row; include N/A when units are not applicable
- **Consistent Values:** include same unit of measurement within column or row; do not mix numeric and text data
- Missing Value Codes: N/A for character data (text) and -9999 for numeric
- **Temporal Data:** Format in YYYY-MM-DD hh:mm:ss, to known precision
- **Spatial Data:** Format in WGS84; Provide latitude and longitude in separate columns/rows

**Feel free to review the <u>CSV Quick Guide</u> as you are working through the CSV

CSV Reporting Format

Formatted CSV Data File

Sample_Name	Date	Water_Temperature	Dissolved_Oxygen	Electrical_Conductivity	Notes
site_1	2022-01-12	22	10.05	46.3	N/A
site_2	2022-01-12	20.7	-9999	45.5	N/A
site_3	2022-01-12	19.7	-9999	54.5	Water level too low to test
site_4	2022-01-12	-9999	10.56	45	N/A
site_5	2022-01-12	21.9	9.89	-9999	N/A
site_6	2022-01-12	-9999	11.01	45.2	Thermometer ran out of power

Variable information moved to data dictionary

- Character Set: Use US-ASCII (includes all upper- and lowercase characters, digits, and common punctuation used in the English language
- Column/Row Orientation: data can be presented either vertically or horizontally
- File, Column, and Row Names: unique and detailed names; only use letters, numbers, hyphens, and underscores; no spaces
- Units: include as next column or row; include N/A when units are not applicable
- **Consistent Values:** include same unit of measurement within column or row; do not mix numeric and text data
- **Missing Value Codes:** N/A for character data (text) and -9999 for numeric, unless otherwise defined in the data dictionary
- **Temporal Data:** Format in YYYY-MM-DD hh:mm:ss, to known precision
- **Spatial Data:** Format in WGS84; Provide latitude and longitude in separate columns/rows

CSV reporting format documentation

1

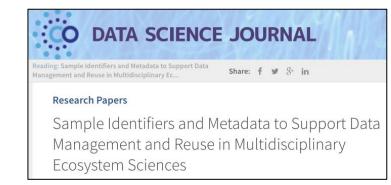
Related Reference References

Guide to Using ESS-DIVE Main Website Search Data Submit Data Contact Us Q Search Welcome **CSV File Structure** Copy link Frequently Asked Questions **∃** ON THIS PAGE SUBMIT DATA **CSV File Structure** Status: READY TO USE File Level Metadata Get Started Guidance for formatting CSV files submitted to **CSV** File Structure Purpose ESS-DIVE Sample ID Metadata Register to Submit Data Soil Respiration Anyone submitting tabular data stored in CSV Dataset Requirements Who should use files to ESS-DIVE Leaf-level Gas Exchange **Describe & Format Datasets** Hydrologic Monitoring GitHub o GitBook Documentation Water and Soil Chemistry Submit Data with Online Form Terri Velliquette; Ranjeet Devarakonda; Jessica 16S Amplicon Sequencing Authors Submit Data with API **CSV** file structure Q **Overview** reporting format Collaborate on Datasets Copy link Overview = ON THIS PAGE Tabular data in the form of rows and columns should be archived in its simplest form. Submit these data Instructions Getting started following the ESS-DIVE Reporting Format for Comma-separated Values (CSV) File Structure. The CSV Updates in v1.0.0 Documents reporting format is more likely accessible by future systems over a proprietary format and is preferred How to contribute because this format is easier to exchange between different programs increasing the interoperability of the data file. Defining the reporting format and structure of the CSV file and some field content increases Copyright information the machine-readability of the data file for extracting, compiling, and comparing the data across files and Funding and acknowledgements systems. Recommended Citation

Getting started

Questions?

Pain points? Unclear guidelines?



Samples Reporting Format

ESS-DIVE Sample ID and Metadata Guide and Template

- 1) ESS-DIVE documentation for samples <u>https://ess-dive.gitbook.io/sample-id-and-metadata/</u>
- 2) <u>Instructions</u> download sample metadata template
- 3) Access metadata guide
- 4) Citation / References →

Damerow *et al.* 2021. http://doi.org/10.5334/dsj-2021-011

ESIP Guide on Publishing Sample-Based Research

Earth Science Information Partners (ESIP)

Physical Samples Curation Cluster

Paper on guide and community/technical needs

A Scientific Author Guide for Publishing Open Research Using Physical Samples

This checklist guide will help authors of scientific papers make their Sample-based studies Open, and <u>Findable, Accessible, Interoperable, and Reusable (FAIR)</u> to advance Sample-based science in the future.

4 STEPS TO PUBLISH OPEN EARTH SCIENCE SAMPLES

- 1. Describe samples with rich metadata, ideally using a standardized community template.
- 2. Assign or use identifiers (such as IGSNs) for samples
- 3. Publish and cite datasets with sample identifiers
- 4. Reference samples in your papers using consistent formatting

Author Guide: <u>https://doi.org/10.6084/m9.figshare.24669057.v1</u> Flyer: <u>https://doi.org/10.6084/m9.figshare.24291148.v2</u>

Step 1. Describe Samples with Rich Metadata

Sample Collections Details

- Collector/Chief Scientist*
- Collection Date*
- Collection Time
- Collection Method
 Description*
- Sample Processing (MIxS)
- Field Program or Project Name*

Sample Access

- Release Date*
- Current Archive
- Current Archive Contact

Location

- Location Description
- Latitude*
- Longitude*
- Geolocation Instrument
- Elevation (start, end)
- Elevation Unit
- Country*
- Minimum/Maximum Depth in Meters (DwC)
- Minimum/Maximum Distance above Surface in Meters (DwC)

Environmental Context

- Physiographic Feature* (ENVO, MIxS)
- Biome (MIxS)

Sample Description

- IGSN-SESAR provides
- Sample Name*
- Object Type* (BCO)
- Material* (ENVO, PO)
- Classification
- Sample Description
- Purpose
- Size, Size Unit
- Filter Size (MIxS)
- Scientific Name (DwC)
- Sample Remarks

Related Identifiers

- Parent IGSN
- Collection ID (DwC)
- Event ID (DwC)
- Location ID (DwC)

Example ESS-DIVE IGSN Template

Object Type:	Individual Sample	User Code:	IEWDR								
Sample Name	IGSN	Parent IGSN	Release Date	Material	Field name (informal classification)	Collection method	Collection method description	Comment	Latitude	Longitude	Primary physiogra
CM_001_Water	10.58052/IEWDR01LH	10.58052/IEWDR01KZ		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	46.7322	-117.1805	stream
CM_002_Water	10.58052/IEWDR01LI	10.58052/IEWDR01KN		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	38.7819	-77.3884	stream
CM_003_Water	10.58052/IEWDR01LJ	10.58052/IEWDR01L4		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	40.1047	-77.1803	stream
CM_004_Water	10.58052/IEWDR01LK	10.58052/IEWDR01KK		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	42.7231	-73.1978	stream
CM_005_Water	10.58052/IEWDR01LL	10.58052/IEWDR01KY		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	48.8186	-122.5806	stream
CM_006_Water	10.58052/IEWDR01LM	10.58052/IEWDR01L2		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	38.9746	-119.8218	stream
CM_007_Water	10.58052/IEWDR01LN	10.58052/IEWDR01KX		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	39.0073	-121.5804	stream
CM_008_Water	10.58052/IEWDR01LO	10.58052/IEWDR01L1		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	33.9485	-117.6118	stream
CM_010_Water	10.58052/IEWDR01LP	10.58052/IEWDR01KQ	2 	Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	33.6666	-79.8467	stream
CM_011_Water	10.58052/IEWDR01LQ	10.58052/IEWDR01KM		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	42.5055	-73.5062	stream
CM_012_Water	10.58052/IEWDR01LR	10.58052/IEWDR01KL		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	42.7638	-73.3372	stream
CM_013_Water	10.58052/IEWDR01LS	10.58052/IEWDR01L6		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	41.3093	-83.1578	stream
CM_014_Water	10.58052/IEWDR01LT	10.58052/IEWDR01KO		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	35.3668	-77.4403	stream
CM_015_Water	10.58052/IEWDR01LU	10.58052/IEWDR01L3		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	39.4803	-106.0468	stream
CM_016_Water	10.58052/IEWDR01LV	10.58052/IEWDR01KR		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	43.4099	-83.965	stream
CM_017_Water	10.58052/IEWDR01LW	10.58052/IEWDR01KT	0	Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	45.5974	-110.566	stream
CM_018_Water	10.58052/IEWDR01LX	10.58052/IEWDR01LB		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	41.3166	-102.126	stream
CM_020_Water	10.58052/IEWDR01LY	10.58052/IEWDR01LC		Liquid>aqueous	Surface water	grab	Surface water was either (1) pulled into syringe fro	WHONDRS CONUS-Scale Model	33.8277	-79.0449	stream
CM 021 Water	10 59052/IEW/DB011 7	10 58052/IEW/DB011 7		Liquid>aqueque	Surface water	areh	Surface water was either (1) nulled into suringe fro	WHONDES CONI IS-Scale Model	30 3505	-111 0053	etroom

Forbes et al., 2023 doi:10.15485/1923689

Step 2: Assign and Use Identifiers for Samples

ل میلامی Unique Identifier

Provides a meaningful, project-specific unique ID to organize your data

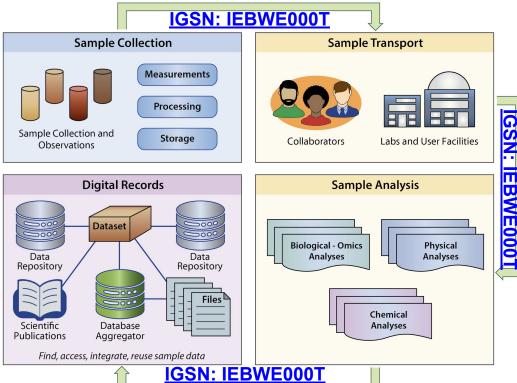
Sample Name: RockCr001_2021-05-25

Globally unique IDs with permanent link/landing page, associated metadata

ORCiD: People **DOI:** Data, publications

IGSN: Samples IEWFS000U

When do you need PIDs?

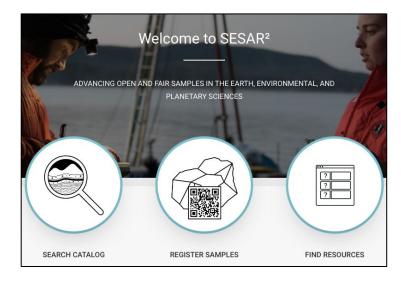


1.) Multiple datasets, journal publication

2.) Collaborators work on same sample:

3.) Multiple labs for analyses

- 4.) Sample-related data in different repositories
- 5.) Archived, and used for multiple purposes over time


Step 2. Assign and Use Identifiers for Samples

Register samples for IGSN IDs through SESAR. <u>https://www.geosamples.org/</u>

For subsamples sent to a lab for analysis:

 Provide the laboratory your source material sample PID (IGSN)

MySESAR						
Back to SESAR Home	My Home	My Samples	My Groups	Register/Update Samples	Search	My A
Batch Sample	Registrati	ion				
Only batch registration	templates in Ex	cel (.xls and .xls)	x) format will be	accepted. Please use the templa	ite creator to	genera
If you downloaded your	template befor	e January 19th, 2	018, you will ne	ed to download a new batch reg	istration tem	nplate.
Add file	ad		11 Clean			

Step 3. Publish and Cite Datasets with Sample Identifiers

Publish a dataset that includes your Sample identifiers (ideally PIDs) and associated data

- Include IGSNs your dataset(s) metadata
- Include an IGSN column within all data files containing your sample data

Cite ESS-DIVE dataset(s) in your papers

DATASET | PUBLISHED 2023 | doi:10.15485/1923689, version: ess-dive-a7ba73cc6384738-20240117T225349958770

WHONDRS River Corridor Dissolved Oxygen, Temperature, Sediment Aerobic Respiration, Grain Size, and Water Chemistry from Machine-Learning-Informed Sites across the Contiguous United States (v3)

Brieanne Forbes, Morgan Barnes, Brandon T Boehnke, Xingyuan Chen, Kali Cornwell, Dillman Delgado, Stephanie G Fulton, Vanessa A Garayburu-Caruso, Stefan Gary, Amy E Goldman, Brianna I Gonzalez, Samantha Grieger, Glenn E Hammond, Peishi Jiang, Matthew H Kaufman, Maggi Laan, Bing Li, Zhi Li, Sophia A McKever, ... and The WHONDRS Consortium + SHOW 14 MORE AUTHORS

Methods & Sampling

Description	This section provides a list of all parent site locations, from which the physical samples were collected. More information is provided in the location landing pages (links below) and the the dataset file that ends in 'IGSN-Mapping.csv'.
	Sample Name IGSN PID IGSN URL
	C21 IGSN:10.58052/IEPRS00TV https://doi.org/10.58052/IEPRS00TV
	HOPB IGSN:10.58052/IEWDR01U6 https://doi.org/10.58052/IEWDR01U6
	MART IGSN:10.58052/IEWDR01U7 https://doi.org/10.58052/IEWDR01U7
	MAYF IGSN:10.58052/IEWDR01U8 https://doi.org/10.58052/IEWDR01U8
	MP-100019 IGSN:10.58052/IEWDR01XN https://doi.org/10.58052/IEWDR01XN

Next Steps for ESS-DIVE Samples

Samples RF does not follow csv RF guidelines

- Need tool to read in Fusion DB

Some minor updates to RF fields not used in SESAR

- Same process as FLMD

Exploring Data Harmonizer tool for validating ESS-DIVE sample metadata

File	- Settings - Validate Help	•	Template Ess	sDive	Loaded f	le ec1_metad	ata_igsn.csv	Next Erro	r			
	Sample IDs and Related Ider Sample Collection Details									Location		
	Sample Name	nt	Collector/Chief Se	cientist	Collection date	Collection time	Collection me	ethod description	Sample processing	Field program/cruise	Latitude	Longitude 1
1	EC1_K001_WATER_40ML_FILT		Donnie Day	-	12/14/2021 🔹				1		41.6228	-83.2362
2	EC1_K001_WATER_15ML_FILT		Donnie Day	-	12/14/2021 *						41.6228	-83.2362
3	EC1_K001_WATER_1L_UNFILT		Donnie Day	1	12/14/2021 *						41.6228	-83.2362
4	EC1_K001_WATER_125ML_UNFILT		Donnie Day		12/14/2021 *						41.6228	-83.2362
5	EC1_K001_WATER_FILTER		Donnie Day	1	12/14/2021 *						41.6228	-83.2362
6	EC1_K001_SEDIMENT_JAR		Donnie Day		12/14/2021 •						41.6228	-83.2362
7	EC1_K001_SEDIMENT_BAG		Donnie Day		12/14/2021 🔹						41.6228	-83.2362
8	EC1_K001_WETLAND_JAR		Donnie Day	-	12/14/2021 *						41.62182	-83.23883
9	EC1_K001_WETLAND_BAG		Donnie Day		12/14/2021 🔹						41.62182	-83.23883
10	EC1_K001_WETLAND_RING		Donnie Day		12/14/2021 *						41.62182	-83.23883
11	EC1 KOO1 LIPLAND JAR		Donnie Dav		19/14/2021						/161511	-83 22070

Next Steps for ESS-DIVE Samples

Incorporate ESS-DIVE Samples RF into NMDC Sample Submission

Linking BER data - Related Identifiers

RDA Complex Citations Hackathon for Samples (April 29, 1-3 pm PT)

0	Home Begin or resume a			Study Information		🖉 I	Aultiomics Data	🧭 Envir Choose	pnment Package		Customize DataHarmonia
1. II	MPORT TSV FI	LE 📄	All Errors (93)	1	•	G (1/93)	C RE-VALIDATE	ו		Jump to col	umn
	Sample ID										
	sample name	globally uni	ique ID		analys	is/data type	environmental package	sample linkage	broad-scale environme	ental context	local envi
	Sample 1	UUID:ca8bf	4d0-3664-11e	d-a261-0242ac120002	2 metab	olomics 🔻	soil		alpine biome		active geo
	Sample 2	UUID:ca8bf	7d2-3664-11e	d-a261-0242ac120002	2		soil		alpine biome [ENVO:07	1001835] 🔻	active geo
	Sample 3	UUID:ca8bf	8d6-3664-11e	d-a261-0242ac120002	2 metab	olomics 🔻	soil				active ge
						Ψ.				v	
i						Ψ.				Ψ.	
						•				Ψ.	
						Ŧ				*	
						Ψ.				V	
						Ψ.				V	
0						Ψ.				Ψ.	
1					_	Ψ.				Ψ	
2						v v				▼	
3					more ro					*	

Questions?

Publishing Datasets with Reporting Formats

File-Level Review and Validation

Datasets using reporting formats go through a second level of validation and review by the Fusion DB *at the time of publication request.*

Validation is re-run if a dataset files are updated.

Keywords	CATEGORICAL:NONE
	Keyword
	River corridor model
	Hyporheic zone
	Aerobic respiration
	Anaerobic respiration
	CRB
	Watershed
	ESS-DIVE CSV File Formatting Guidelines Reporting Format
	ESS-DIVE File Level Metadata Reporting Format

The Fusion DB uses keywords to identify datasets that have FLMD files


File-Level Review and Validation

Fusion DB checks for the inclusion of required fields in FLMD and Data dictionary files, and that CSV files conform to CSV reporting format requirements.*

Common Errors

- Incorrect naming of required FLMD and DD fields
- Parsing issues in CSVs: variables with spaces or special characters, UTF-8 errors
- Incorrect data orientation defined in FLMD

Exploring programmatically fixing common errors during review

File-Level Review and Validation

Errors are reported to the ESS-DIVE team and sent to data contributor along with any other necessary revision requests

- Errors that are required for the parsing of data files should be fixed before publication
- Files that do parse after publication are available in deep dive

Considering development of additional methods/external tools for providing feedback before submitting and requesting publication.

Community GitHub - instructions, templates, feedback

Reporting Format Checklist

Past webinars

Portal of datasets using reporting formats for examples

Deep dive API

Please contact <u>ess-dive-support@lbl.gov</u> with questions or feedback

Questions?

Connect With ESS-DIVE

To get help: ess-dive.lbl.gov ess-dive-support@lbl.gov docs.ess-dive.lbl.gov

To stay updated: ess-dive-community@lbl.gov Xin @essdive https://bit.ly/essdiveMailingList

Acknowledgements

Advisory Groups: ESS-DIVE Archive Partnership Board, ESS Cyberinfrastructure Working Groups Funding: EESSD Data Management

