Reporting formats for Unoccupied Aerial System (UAS) data and metadata Kim S. Ely and Shawn P. Serbin ESS-DIVE webinar 30 January, 2023 @BrookhavenLab #### Motivated by FAIR data principles - Full value of UAS data yet to be realized (Wyngaard et al, 2019) - Inadequate and variable metadata reporting is a major challenge - Common metadata makes data more FAIR Findable Accessible Interoperable Reproducible (Wilkinson et al, 2016) # Format scope: small UAS data only # Modular approach to data management - Compatible with other ESS-DIVE formats - Compatible with established standards & conventions e.g. date time variables (ISO 8601) & spatial (EPSG) data package metadata file level metadata domain specific formats # A community development process **Based on** our established research group practice **Searched** for existing standards Align common elements with ESS-DIVE Open to community input using GitHub and Google Docs # Questions on scope and methods? # Reporting format overview - UAS specific metadata capture 4 metadata categories - Data product description 4 processing level classifications - Supporting materials Scope description, instructions for use # Reporting format overview - UAS specific metadata capture 4 metadata categories - Data product description 4 processing level classifications - Supporting materials Scope description, instructions for use Four categories of UAS specific metadata - Flight campaign - Mission details - Platform description - Sensor descriptions | Metadata | variableName | Requirement | Unit and/or | Description | Example | |----------|--------------|-------------|-------------|-------------|---------| | element | | level | format | | | #### How much metadata is needed? Challenge: balancing desire for detail with ease of use A flexible reporting format is required! #### Metadata variables requirement level - required - recommended - optional - x not applicable # Flight campaign metadata - Research project - Contact - Pilot in Command (PIC) - Location description - LocationID - Start date - End date - Total number of flights - Average flight time - O Total flight time - O Permits and waivers - O Base station # Mission detail metadata: flight info - Flight name - Site - Start Date Time - End Date Time - Flight boundary - Flight height - Forward overlap - Side overlap - Flight speed # Mission detail metadata: weather conditions - Weather conditions - Illumination condition - Light quality - Cloud cover - Cloud type - O Surface wetness - O Days since last rain event #### **UAS** platform metadata required Orecommended Ooptional - Airframe type - Maximum takeoff gross weight - Make/model - Flight controller - Serial number - Registration number - O Motor type - O Propellor type - O Battery type - O Gimbal type - O Navigation - O IMU - O Radio & telemetry - O Handheld remote control - O Platform images available #### Sensor metadata elements Specific metadata recommendations have been made for: - RGB cameras - Thermal cameras - Point spectrometers - Imaging spectrometers - LiDAR Metadata elements for novel sensors can be selected from the variable list #### Sensor metadata elements 32 variables, with variable names, units, descriptions and examples | Metadata element (some examples) | Optical RGB camera | Thermal camera | Point spectrometer | Imaging spectrometer | LiDAR | |----------------------------------|--------------------|----------------|--------------------|----------------------|-------| | Sensor type | | | | | | | Manufacturer and model | | | | | | | Serial number | 0 | | | | | | Calibration date | * | 0 | 0 | 0 | 0 | | Foreoptic | | | | | × | | Image area and size | 0 | 0 | × | × | * | | FOV | 0 | 0 | 0 | 0 | | | File format | | | | | | | Measurement units | 0 | | | | 0 | # Sensor metadata example - csv templates available for standard sensor types - Platform and sensor metadata files can be reused for multiple campaigns | variableName | metadata | |-----------------|---| | sensorType | point spectrometer | | makeModel | Ocean Optics FLAME spectrometer x 2 | | serialNum | 45932; 45933 | | calibrationDate | 2023-01-31 | | foreoptic | 14 deg FOV (upwelling); cosine diffuser (downwelling) | # Questions on metadata categories? # Reporting format overview - UAS specific metadata capture 4 metadata categories - Data product description 4 processing level classifications - Supporting materials Scope description, instructions for use # Data processing levels #### For improved data discovery L0: Raw data, telemetry e.g. RGB image L1: Basic post-processing e.g. orthophoto mosaic # Data processing levels #### For improved data discovery L2: Processed data products e.g. canopy height model L3: Derived data products e.g. plant functional type map # Questions on processing levels? # Reporting format overview - UAS specific metadata capture 4 metadata categories - Data product description 4 processing level classifications - Supporting materials Scope description, instructions for use #### More information on GitHub #### In the development phase (now!) - Project scope - How to give feedback - Links to reporting format content - Instructions for format use #### At completion v1.0 - Metadata variable tables - Metadata templates - Description of product levels - Examples #### Be a co-author on the paper - Planned publication about the reporting format - All contributors to the format invited Contents lists available at ScienceDirect #### **Ecological Informatics** journal homepage: www.elsevier.com/locate/ecolinf #### A reporting format for leaf-level gas exchange data and metadata Kim S. Ely ^{a,*}, Alistair Rogers ^a, Deborah A. Agarwal ^b, Elizabeth A. Ainsworth ^c, Loren P. Albert ^d, Ashehad Ali ^e, Jeremiah Anderson ^a, Michael J. Aspinwall ^f, Chandra Bellasio ^g, Carl Bernacchi ^c, Steve Bonnage ^h, Thomas N. Buckley ^f, James Bunce ^j, Angela C. Burnett ^a, Florian A. Busch ^k, Amanda Cavanagh ^l, Lucas A. Cernusak ^m, Robert Crystal-Ornelas ⁿ, Joan Damerow ⁿ, Kenneth J. Davidson ^a, Martin G. De Kauwe ^o, Michael C. Dietze ^p, Tomas F. Domingues ^q, Mirindi Eric Dusenge ^r, David S. Ellsworth ^s, John R. Evans ^t, Paul P.G. Gauthier ^u, Bruno O. Gimenez ^v, Elizabeth P. Gordon ^w, Christopher M. Gough ^x, Aud H. Halbritter ^y, David T. Hanson ^z, Mary Heskel ^{aa}, J. Aaron Hogan ^{ab}, Jason R. Hupp ^w, Kolby Jardine ^{ac}, Jens Kattge ^{ad}, Trevor Keenan ^{n,ae}, Johannes Kromdijk ^{af}, Dushan P. Kumarathunge ^{ag}, Julien Lamour ^a, Andrew D.B. Leakey ^{ah}, David S. LeBauer ^{ai}, Qianyu Li ^a, jorie R. Lundgren ^{aj}, Nate McDowell ^{ak}, Katherine Meacham-Hensold ^{al}, Belinda E. Medlyn ^s, id J.P. Moore ^{am}, Robinson Negrón-Juárez ^b, Ülo Niinemets ^{an}, Colin P. Osborne ^{ao}, candria L. Pivovaroff ^{ap}, Hendrik Poorter ^{aq}, Sasha C. Reed ^{ar}, Youngryel Ryu ^{as}, iro Sanz-Saez ^{at}, Stephanie C. Schmiege ^{au}, Shawn P. Serbin ^a, Thomas D. Sharkey ^{av}, tijn Slot ^v, Nicholas G. Smith ^{aw}, Balasaheb V. Sonawane ^{ax}, Paul F. South ^{ay}, y C. Souza ^{az}, Joseph Ronald Stinziano ^{ba}, Ellen Stuart-Haëntjens ^{bb}, Samuel H. Taylor ^{aj}, iricio D. Tejera ^{bc}, Johan Uddling ^r, Vigdis Vandvik ^y, Charuleka Varadharajan ⁿ, nony P. Walker ^{bd}, Berkley J. Walker ^{av, be}, Jeffrey M. Warren ^{bd}, Danielle A. Way ^{bf}, t T. Wolfe ^{bg}, Jin Wu ^{bh}, Stan D. Wullschleger ^{bi}, Chonggang Xu ^{bj}, Zhengbing Yan ^{bh}, i Yang ^a Contents lists available at ScienceDirect #### **Ecological Informatics** journal homepage: www.elsevier.com/locate/ecolinf #### A reporting format for field measurements of soil respiration Ben Bond-Lamberty ^{a,*}, Danielle S. Christianson ^b, Robert Crystal-Ornelas ^b, Kayla Mathes ^c, Stephanie C. Pennington ^a - ^a Pacific Northwest National Laboratory, Joint Global Change Research Institute at the University of Maryland-College Park, College Park, MD 20740, USA ^b Lawrence Berkelev National Laboratory, Berkeley. CA 94609. USA - ^c Integrated Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA #### What next? Feedback is welcome! Feedback open until March 2023 Comment on the draft documentation Use GitHub Issues and Discussions v.1 published by September 2023 Contact Kim Ely, kely@bnl.gov