

Reporting formats for Unoccupied Aerial System (UAS) data and metadata

Kim S. Ely and Shawn P. Serbin

ESS-DIVE webinar 30 January, 2023

@BrookhavenLab

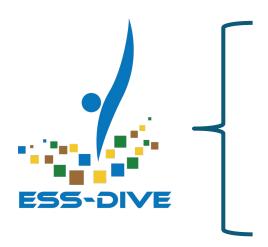
Motivated by FAIR data principles

- Full value of UAS data yet to be realized (Wyngaard et al, 2019)
- Inadequate and variable metadata reporting is a major challenge
- Common metadata makes data more FAIR

Findable
Accessible
Interoperable
Reproducible

(Wilkinson et al, 2016)

Format scope: small UAS data only



Modular approach to data management

- Compatible with other ESS-DIVE formats
- Compatible with established standards & conventions

e.g. date time variables (ISO 8601) & spatial (EPSG)

data package metadata file level metadata domain specific formats

A community development process

Based on our established research group practice

Searched for existing standards

Align common elements with ESS-DIVE

Open to community input using GitHub and Google Docs

Questions on scope and methods?

Reporting format overview

- UAS specific metadata capture 4 metadata categories
- Data product description
 4 processing level classifications
- Supporting materials
 Scope description, instructions for use

Reporting format overview

- UAS specific metadata capture 4 metadata categories
- Data product description
 4 processing level classifications
- Supporting materials
 Scope description, instructions for use

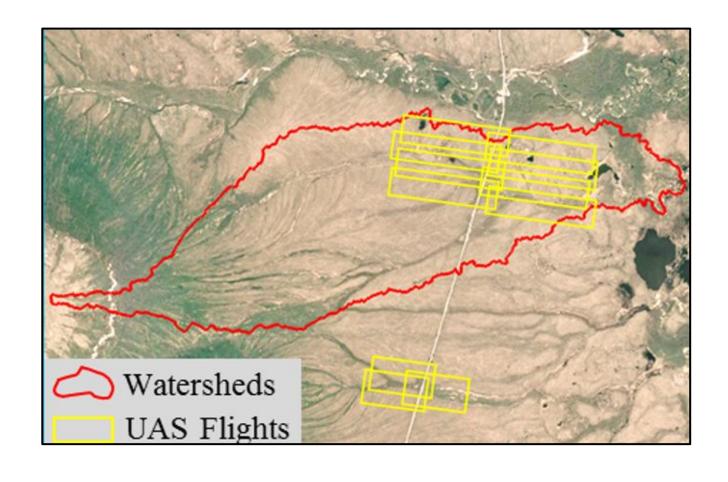
Four categories of UAS specific metadata

- Flight campaign
- Mission details
- Platform description
- Sensor descriptions

Metadata	variableName	Requirement	Unit and/or	Description	Example
element		level	format		

How much metadata is needed?

Challenge: balancing desire for detail with ease of use


A flexible reporting format is required!

Metadata variables requirement level

- required
- recommended
- optional
- x not applicable

Flight campaign metadata

- Research project
- Contact
- Pilot in Command (PIC)
- Location description
- LocationID
- Start date
- End date
- Total number of flights
- Average flight time
- O Total flight time
- O Permits and waivers
- O Base station

Mission detail metadata: flight info

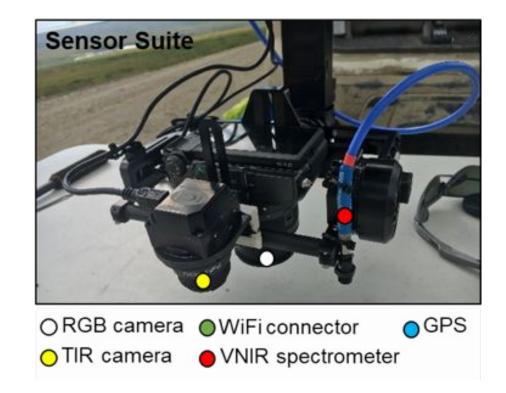
- Flight name
- Site
- Start Date Time
- End Date Time
- Flight boundary
- Flight height
- Forward overlap
- Side overlap
- Flight speed

Mission detail metadata: weather conditions

- Weather conditions
- Illumination condition
- Light quality
- Cloud cover
- Cloud type
- O Surface wetness
- O Days since last rain event

UAS platform metadata

required Orecommended Ooptional


- Airframe type
- Maximum takeoff gross weight
- Make/model
- Flight controller
- Serial number
- Registration number
- O Motor type
- O Propellor type
- O Battery type
- O Gimbal type
- O Navigation
- O IMU
- O Radio & telemetry
- O Handheld remote control
- O Platform images available

Sensor metadata elements

Specific metadata recommendations have been made for:

- RGB cameras
- Thermal cameras
- Point spectrometers
- Imaging spectrometers
- LiDAR

Metadata elements for novel sensors can be selected from the variable list

Sensor metadata elements

32 variables, with variable names, units, descriptions and examples

Metadata element (some examples)	Optical RGB camera	Thermal camera	Point spectrometer	Imaging spectrometer	LiDAR
Sensor type					
Manufacturer and model					
Serial number	0				
Calibration date	*	0	0	0	0
Foreoptic					×
Image area and size	0	0	×	×	*
FOV	0	0	0	0	
File format					
Measurement units	0				0

Sensor metadata example

- csv templates available for standard sensor types
- Platform and sensor metadata files can be reused for multiple campaigns

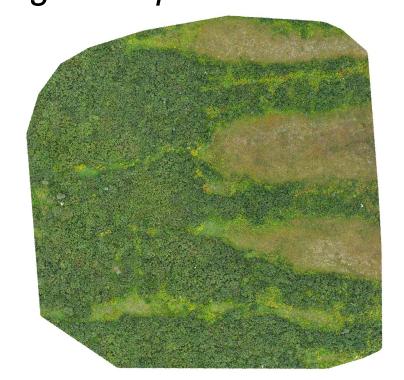
variableName	metadata
sensorType	point spectrometer
makeModel	Ocean Optics FLAME spectrometer x 2
serialNum	45932; 45933
calibrationDate	2023-01-31
foreoptic	14 deg FOV (upwelling); cosine diffuser (downwelling)

Questions on metadata categories?

Reporting format overview

- UAS specific metadata capture 4 metadata categories
- Data product description
 4 processing level classifications
- Supporting materials
 Scope description, instructions for use

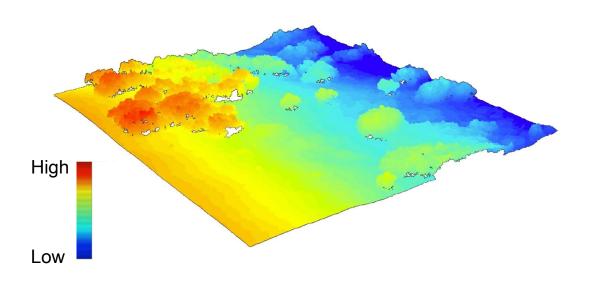
Data processing levels

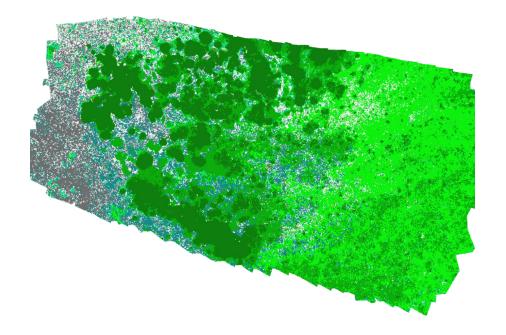

For improved data discovery

L0: Raw data, telemetry

e.g. RGB image

L1: Basic post-processing e.g. orthophoto mosaic




Data processing levels

For improved data discovery

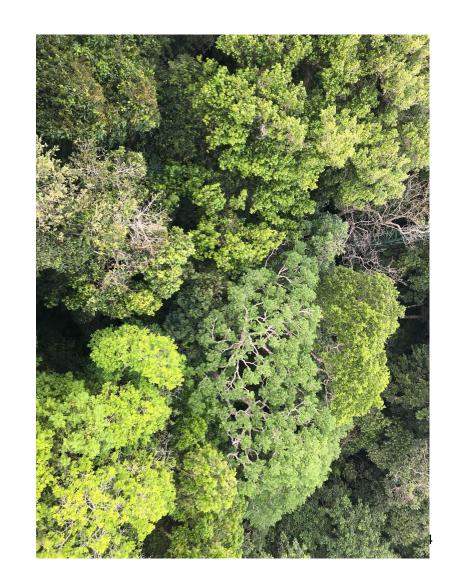
L2: Processed data products e.g. canopy height model

L3: Derived data products e.g. plant functional type map

Questions on processing levels?

Reporting format overview

- UAS specific metadata capture 4 metadata categories
- Data product description
 4 processing level classifications
- Supporting materials
 Scope description, instructions for use


More information on GitHub

In the development phase (now!)

- Project scope
- How to give feedback
- Links to reporting format content
- Instructions for format use

At completion v1.0

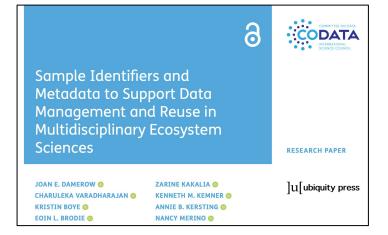
- Metadata variable tables
- Metadata templates
- Description of product levels
- Examples

Be a co-author on the paper

- Planned publication about the reporting format
- All contributors to the format invited

Contents lists available at ScienceDirect

Ecological Informatics


journal homepage: www.elsevier.com/locate/ecolinf

A reporting format for leaf-level gas exchange data and metadata

Kim S. Ely ^{a,*}, Alistair Rogers ^a, Deborah A. Agarwal ^b, Elizabeth A. Ainsworth ^c, Loren P. Albert ^d, Ashehad Ali ^e, Jeremiah Anderson ^a, Michael J. Aspinwall ^f, Chandra Bellasio ^g, Carl Bernacchi ^c, Steve Bonnage ^h, Thomas N. Buckley ^f, James Bunce ^j, Angela C. Burnett ^a, Florian A. Busch ^k, Amanda Cavanagh ^l, Lucas A. Cernusak ^m, Robert Crystal-Ornelas ⁿ, Joan Damerow ⁿ, Kenneth J. Davidson ^a, Martin G. De Kauwe ^o, Michael C. Dietze ^p, Tomas F. Domingues ^q, Mirindi Eric Dusenge ^r, David S. Ellsworth ^s, John R. Evans ^t, Paul P.G. Gauthier ^u, Bruno O. Gimenez ^v, Elizabeth P. Gordon ^w, Christopher M. Gough ^x, Aud H. Halbritter ^y, David T. Hanson ^z, Mary Heskel ^{aa}, J. Aaron Hogan ^{ab}, Jason R. Hupp ^w, Kolby Jardine ^{ac}, Jens Kattge ^{ad}, Trevor Keenan ^{n,ae}, Johannes Kromdijk ^{af}, Dushan P. Kumarathunge ^{ag}, Julien Lamour ^a, Andrew D.B. Leakey ^{ah}, David S. LeBauer ^{ai}, Qianyu Li ^a,

jorie R. Lundgren ^{aj}, Nate McDowell ^{ak}, Katherine Meacham-Hensold ^{al}, Belinda E. Medlyn ^s, id J.P. Moore ^{am}, Robinson Negrón-Juárez ^b, Ülo Niinemets ^{an}, Colin P. Osborne ^{ao}, candria L. Pivovaroff ^{ap}, Hendrik Poorter ^{aq}, Sasha C. Reed ^{ar}, Youngryel Ryu ^{as}, iro Sanz-Saez ^{at}, Stephanie C. Schmiege ^{au}, Shawn P. Serbin ^a, Thomas D. Sharkey ^{av}, tijn Slot ^v, Nicholas G. Smith ^{aw}, Balasaheb V. Sonawane ^{ax}, Paul F. South ^{ay}, y C. Souza ^{az}, Joseph Ronald Stinziano ^{ba}, Ellen Stuart-Haëntjens ^{bb}, Samuel H. Taylor ^{aj}, iricio D. Tejera ^{bc}, Johan Uddling ^r, Vigdis Vandvik ^y, Charuleka Varadharajan ⁿ, nony P. Walker ^{bd}, Berkley J. Walker ^{av, be}, Jeffrey M. Warren ^{bd}, Danielle A. Way ^{bf}, t T. Wolfe ^{bg}, Jin Wu ^{bh}, Stan D. Wullschleger ^{bi}, Chonggang Xu ^{bj}, Zhengbing Yan ^{bh}, i Yang ^a

Contents lists available at ScienceDirect

Ecological Informatics

journal homepage: www.elsevier.com/locate/ecolinf

A reporting format for field measurements of soil respiration

Ben Bond-Lamberty ^{a,*}, Danielle S. Christianson ^b, Robert Crystal-Ornelas ^b, Kayla Mathes ^c, Stephanie C. Pennington ^a

- ^a Pacific Northwest National Laboratory, Joint Global Change Research Institute at the University of Maryland-College Park, College Park, MD 20740, USA ^b Lawrence Berkelev National Laboratory, Berkeley. CA 94609. USA
- ^c Integrated Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA

What next? Feedback is welcome!

Feedback open until March 2023

Comment on the draft documentation

Use GitHub Issues and Discussions

v.1 published by September 2023

Contact Kim Ely, kely@bnl.gov

