ESS-DIVE Package Level Metadata Review

Joan Damerow, Emily Robles, Zarine Kakalia, Charu Varadharajan
Introduction

- Introduction
- Background Research
- Proposed Checks
 - Files
 - Title length and content
 - Keywords
 - Abstract length and content
 - Methods presence and content
- ESS-DIVE Metadata Review
 - Automated Checks
 - Quality Reports
 - Goals
Motivation: Why spend time to create “FAIR” Metadata

Publishing, funding and scientific community moving towards FAIR

SBR Report - Open Watershed Science by Design

Maximize future value of data - support data REUSE

Citations, Contribute to H-Index
Data packages are publications

Chipman D; Takahashi T; Breger D; Sutherland S (1996): CO2, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 11/5 in the South Atlantic and Northern Weddell Sea Areas (WOCE sections A-12 and A-21). CDIAC.
doi:10.3334/CDIAC/OTG.NDP045

4 Citations

Familiar publication process

Submit an Article at ScholarOne Manuscripts

Title
(Avoid using acronyms in the title as much as possible.)

Abstract
(Be sure to define ALL acronyms in the abstract.)

Write or Paste Abstract

Files
ORDER ACTIONS FILE FILE DESIGNATION UPLOAD DATE UPLOADED BY
No files uploaded

Keywords

Show Full List

Add Author
Find using Author's email address

Add files to start your dataset

Overview
People
Title
A brief, meaningful title for the data package.
A good title includes the topic, geographic details, dates, and scale of the data.

Dates
Existing DOI and Alternate Identifiers
DOI and alternate identifiers of the data package. It has been previously published elsewhere. Alternate identifiers provide pertinent information that can identify and locate the data set within your site's data.
Enter as many identifiers as needed below:

Locations
Methods

Method

Add Files

Example: http://dx.doi.org/10.15486/3MTXW0X0

Abstract

Example: Flow output from the data logger connected to 8 sapflow and 5 soil moisture sensors are provided in csv.dat. The metadata file (ESS-DIVE_E-File_lng, 2018000000) contains information on location where the sensors were installed, other installation/maintenance details. No data processing or QC/QC was done on the raw data package. Processed data packages will be uploaded separately.

Keywords

Keywords that should be associated with the data package to enable thematic searches.
Search for a keyword from the list or add one of your own. Tab or click enter to add to the list below with one keyword per line. The list contains 5750 keywords.

Data Variables

Data Variables
Measurement variables present in the data package.
Search for a variable from the list or add one of your own. Tab or click enter to add to the list below with one variable per line. The list contains 12257 variables.

Contact

Contact

All information entered in this section will be made public once the data package is published.
More journals and funders require data in repositories that support FAIR principles.

Datasets are valuable research contributions, “not files that are shoved in as an afterthought.”

Increasing calls for the entire scientific community to implement FAIR.

Make scientific data FAIR

All disciplines should follow the geosciences and demand best practice for publishing and sharing data, argue Shelley Stall and colleagues.
Objectives of webinar

Synthesis of background research on metadata requirements and review

Get your FEEDBACK:

- Proposed manual metadata checks based on research
- Automated checks and existing quality reports
- DataONE FAIR checks and future quality reports
Background Research

- Introduction
- **Background Research**
- Proposed Checks
 - Files
 - Title length and content
 - Keywords
 - Abstract length and content
 - Methods presence and content
- **ESS-DIVE Metadata Review**
 - Automated Checks
 - Quality Reports
 - Goals
Background Research - Repositories

Similar data repositories and documented requirements for high-level fields

Contacted multiple repository representatives for additional information

Reviewed EML metadata schema to identify common required fields

Repositories:
- Arctic Data Center
- Environmental Data Initiative
- The Knowledge Network for Biocomplexity
- EarthData
- NOAA
- ORNL DAAC
- USGS
- NGEE Tropics Archive
- Pangaea
Reviewed requirements for the same basic information required by earth and environmental science journals.

Journals:
- Environmental Modelling & Software
- Science of the Total Environment
- IEEE Access
- ESA Journals
- Nature
- Science
- Environmental Science and Technology
Background Research - Datasets

Sampling - Whondrs
- Collection dates
- Sampling procedure (depth, location, instrumentation)
- Amount and frequency of medium collected
- Analyses done to samples

Field Campaign - NGEE Tropics
- Collection time
- Data collected for each sample
- Larger campaign for which these samples are a part of

Field Experiment - SPRUCE
- Field site
- Treatment/Manipulation procedure done
- Responses recorded

Laboratory Experiment - NGEE Arctic
- Sample retrieval site
- Treatment/Manipulation procedure done
- Responses recorded

Sensors and QA/QC - Ameriflux
- Installation of sensors and data loggers (height, instrumentation)
- Collection frequency
- Corrections and calculations to raw data
- Quality Control thresholds

Model Data - FACE
- Data and protocols necessary to simulate the experiments
- Major corrections to the original data
Existing Automated Metadata Quality Reports

Testing automated checks and reports developed by NCEAS/DataONE

Evaluate whether datasets pass/fail certain checks

Generally based on some basic FAIR principles, but many will be upgraded

Demo later in presentation
DataONE FAIR Checks

Participated in ESIP workshop
Provide feedback on DataONE FAIR checks (follow links to review and provide feedback:
- **Findable**
- **Accessible**
- **Interoperable**
- **Reusable**

Designed to quantify FAIR scores for datasets and entire repositories
- Some checks are more relevant at the repository level based on requirements
- **Required** directly affects FAIR score, **Optional** only applies to score if pass

Current checks either correspond to one of the FAIR principles or can be upgraded to a FAIR check when finalized
Proposed Checks

- Introduction
- Background Research
- Proposed Checks
 - Files
 - Title length and content
 - Keywords
 - Abstract length and content
 - Methods presence and content
- ESS-DIVE Metadata Review
 - Automated Checks
 - Quality Reports
 - Goals
Proposed checks: Files

Related repository requirements:
- Use of common file formats is required
- Any code used to process data included
- Each file has a short descriptive name

Proposed checks:
- At least one associated file - Accessible
- Use common non-proprietary file formats where possible (e.g. csv, txt, pdf, png, jpeg, tiff, R or Python scripts, many others). - Interoperable/Reusable
- Software is specified, if necessary - Reusable

More extensive requirements coming soon with file metadata standards
Proposed check: **Title length and content**

Related repository requirements:

- Common range: 5 words minimum, 20 words maximum
- Include data package topic, geographic location, and dates at minimum
- Format similarly to a journal title

Journal requirements:

- Specific and informative
- Avoid abbreviations and acronyms
- Vary from **maximum of 96 to 120 characters**

Proposed checks:

- **Title length is 7-20 or 40? words** - Findable
- **Title reflects data package specifically and may include information on what/where/when data was collected** - Findable
- **No unexplained acronyms or project-specific jargon**
Predawn Leaf Water Potential of Oak-Hickory Forest at Missouri Ozark (MOFLUX) Site: 2004-2017

Proposed check: **Keywords**

Related repository requirements:
- Keywords related to data type and geographic locations

Journal requirements:
- Average 3-6 keywords
- Do not use words included in the title
- Can only include established acronyms

Proposed checks:
- There are at least 3 keywords, differ from words in title - Findable
- Keywords from standardized controlled vocabularies - Findable
Controlled Keywords Example

Keywords *

Keywords that should be associated with this data package to enable thematic searches.
Search for a keyword from the list or write in your own. Tab or click enter to add to the list below with one keyword per line. The list contains GCMD keywords.

Use autocomplete feature to pick from the existing keywords.

Earth

EARTH SCIENCE > AGRICULTURE > AGRICULTURAL AQUATIC SCIENCES: CATEGORICAL:GCMD
EARTH SCIENCE > AGRICULTURE > AGRICULTURAL CHEMICALS: CATEGORICAL:GCMD
EARTH SCIENCE > AGRICULTURE > AGRICULTURAL ENGINEERING: CATEGORICAL:GCMD
EARTH SCIENCE > AGRICULTURE > AGRICULTURAL PLANT SCIENCE: CATEGORICAL:GCMD
EARTH SCIENCE > AGRICULTURE > ANIMAL COMMODITIES: CATEGORICAL:GCMD
EARTH SCIENCE > AGRICULTURE > ANIMAL SCIENCE: CATEGORICAL:GCMD
EARTH SCIENCE > AGRICULTURE > FEED PRODUCTS: CATEGORICAL:GCMD
EARTH SCIENCE > AGRICULTURE > FOOD SCIENCE: CATEGORICAL:GCMD
Proposed check: **Abstract length and content**

Related repository requirements:
- Summarizes the purpose and content of data
- Minimum required length varies between 20 and 100 words depending on repository

Journal requirements:
- Contents of the dataset
- When and where the data were collected
- How to use the data
- **Purpose of collecting the data**
- Understandable to anyone in the scientific community

Proposed checks:
- Abstract at least 100 words - Findable
- Include clear and concise description of the purpose and contents - Findable/Reusable
- Understandable to anyone who has not seen related manuscripts and contains no unexplained acronyms
Abstract Example

Purpose

Sampling

Analyses

Contents

This dataset is from a global survey of surface water metabolites to provide understanding of the character of organic carbon that may be delivered to subsurface sediments via hydrologic exchange. To implement the global survey, free stream sampling kits were provided to interested researchers throughout the world. Samples were collected with minimal constraints in terms of location, but following strict protocols, and shipped to the Environmental Molecular Sciences Laboratory (EMSL) for metabolomic analysis via Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). In addition, basic geochemistry analyses (e.g., dissolved organic carbon concentration, cations, anions) were conducted, standardized photos of each field system were taken, surface water hydrographs were collated from existing instrumentation, and extensive metadata were captured. All data types are provided in a standard format. In addition, the data package contains an R function that will launch a GUI that can be used to easily search, compile, and download data. The data are free to be used for any purpose, such as for manuscripts, presentations, and grant proposals. Please use the data package's DOI to cite the data package. Note that individual hydrographs have separate DOIs, which are provided in the associated hydrograph files. These hydrograph-specific DOIs should also be cited when using those data. We ask that you email us at WHONDERS@pmnl.gov to let us know that you're using the data and acknowledge WHONDERS and the U.S. Department of Energy's Subsurface Biogeochemical Research program—which generously provides funding to WHONDERS—in your documents, presentations, etc. There is no obligation to include WHONDERS members as co-authors.

Stegen J C ; Goldman A E ; Blackburn S E ; Chu R K ; Danczak R E ; Garayburu-Caruso V A ; Graham E B ; Grieshauber C ; Lin X ; Morad J W ; Ren H ; Renteria L ; Resch C T ; Tfaily M ; Tolic N ; Toyoda J G ; Wells J R ; Znotinas K R (2018): WHONDERS Surface Water Sampling for Metabolite Biogeography. Worldwide Hydrobiogeochemistry Observation Network for Dynamic River Systems (WHONDERS). doi:10.15485/1484811
Proposed check: Methods presence and content

Related repository requirements:
- Descriptions of field and laboratory sample collection
- Details about hardware and software used to produce data
- Descriptions of how the data were generated and (if applicable) modified

Journal requirements:
- Sufficient information for a user to understand and reproduce your work
- Experimental design, sampling procedures, and QA/QC

Proposed checks:
- Methods contain more than 7 words - Reusable
- Methods are included and clearly written, or at least refer to a previous publication - Reusable
- Encourage that methods document all data collection, processing, and/or QA/QC steps to produce the data - Reusable
Methods Example

Technique and instrumentation

Step 1

Description

Tall tower N2O mixing ratios were measured using a tunable diode laser technique (TGA100, Campbell Scientific Inc., Logan, Utah, USA). The TDL measured N2O at wavenumber 2243.760 cm⁻¹. The TDL was maintained at the base of the tall tower in a temperature-controlled radio communications building.

Calibrations were performed hourly with standards traceable to the NOAA-ESRL (National Oceanic and Atmospheric Administration - Earth System Research Laboratory) 2006A N2O mole fraction scale. The NOAA-ESRL gold standard (Standard Cylinder #CA07680) has a mixing ratio (mean ± 1 standard deviation) of 324.30 ± 0.09 ppb as determined by NOAA-ESRL. The hourly precision of the tall tower calibration measurements was calculated from Allan variance analysis of working standards and was 0.50 ppb (1σ).

Sampling details

Step 2

Description

Air from the tall tower was sampled from inlets at approximately 32, 56, 100, and 185 m. Air was pulled continuously through each of the inlets using a flow rate in excess of 15 SLPM to the base of the tower and then sub-sampled at 3 SLPM using a custom designed manifold. The air sampling and calibration consisted of the following sampling sequence where each inlet was sampled for 15 s: ultra zero air; CO2 span 1; N2O span; CO2 span 2; 185 m inlet; 103 m inlet; 56 m inlet; and 32 m inlet. The air samples were dried prior to analysis using a Nafion dryer. All of the calibrated data were then block averaged into hourly values. The hourly values were filtered using a basic low pass/high pass filter and subsequent wavelet decomposition (described below). Extremes N2O outliers are defined as > 360 ppb or < 315 ppb. Further, any hourly periods with the TGA100 system reporting a status error were filtered. The TGA100 error status usually indicates that the laser was not locked onto the target absorption line.

QA/QC standards

Step 3

Description

A basic low pass/high pass filter for N2O and CO2 have been used to quality control these data. These thresholds could be tightened further, but provide a very good first level of filtering.

Additional filtering using wavelet analyses is also provided. Here, we used the Haar wavelet to decompose the original N2O signal into low-pass filtered coefficients and high-pass filtered details using level 1 through level 6 decomposition. All analyses were performed using the wavedec function available in the MATLAB Wavelet Toolbox (MATLAB, R2013b The Mathworks Inc., MA, USA). The wavelet filtered data A1 through A6 are also provided here.
ESS-DIVE Metadata Review

● Introduction
● Background Research
● Proposed Checks
 ○ Files
 ○ Title length and content
 ○ Keywords
 ○ Abstract length and content
 ○ Methods presence and content

● ESS-DIVE Metadata Review
 ○ Automated Checks
 ○ Quality Reports
 ○ Goals
ESS-DIVE New Review Process

Automated quality checks focus on presence of metadata and word counts - see Quality Report for instant feedback

Manual metadata content reviews

Quality Reports from automated checks for each package, eventually projects, and ESS-DIVE

Review form for consistent checks and feedback
Data on quality before/after review and time
Existing Automated Metadata Quality Reports

Developed by NCEAS and DataONE
Quality report shows percentage of checks that pass different categories

Demo:
https://data.ess-dive.lbl.gov/quality/ess-dive-28ef3e4a1360a48-20190815T182803220548

https://data.ess-dive.lbl.gov/quality/ess-dive-ca7ea9922ea9aff-20181219T160938778966

https://data.ess-dive.lbl.gov/quality/ess-dive-3db5398a4a2fb59-20180704T200317625
Goals for Package Metadata Review

Clear guidance for each metadata element

Data and metadata curation done by data package authors

Automated checks and manual content review

Efficient (10-15 min) and standardized

Review feedback providing specific suggestions for metadata

Working towards FAIR data standards
Feedback on proposed automated and manual checks:

https://docs.google.com/spreadsheets/d/14v3hjPL9jDSgfSF6RCyDgwEKZIK4xwAzJRCb0zjTsfg/edit?usp=sharing